Exome-Wide Somatic Microsatellite Variation Is Altered in Cells with DNA Repair Deficiencies
نویسندگان
چکیده
Microsatellites (MST), tandem repeats of 1-6 nucleotide motifs, are mutational hot-spots with a bias for insertions and deletions (INDELs) rather than single nucleotide polymorphisms (SNPs). The majority of MST instability studies are limited to a small number of loci, the Bethesda markers, which are only informative for a subset of colorectal cancers. In this paper we evaluate non-haplotype alleles present within next-gen sequencing data to evaluate somatic MST variation (SMV) within DNA repair proficient and DNA repair defective cell lines. We confirm that alleles present within next-gen data that do not contribute to the haplotype can be reliably quantified and utilized to evaluate the SMV without requiring comparisons of matched samples. We observed that SMV patterns found in DNA repair proficient cell lines without DNA repair defects, MCF10A, HEK293 and PD20 RV:D2, had consistent patterns among samples. Further, we were able to confirm that changes in SMV patterns in cell lines lacking functional BRCA2, FANCD2 and mismatch repair were consistent with the different pathways perturbed. Using this new exome sequencing analysis approach we show that DNA instability can be identified in a sample and that patterns of instability vary depending on the impaired DNA repair mechanism, and that genes harboring minor alleles are strongly associated with cancer pathways. The MST Minor Allele Caller used for this study is available at https://github.com/zalmanv/MST_minor_allele_caller.
منابع مشابه
A genome-wide view of microsatellite instability: old stories of cancer mutations revisited with new sequencing technologies.
Microsatellites are simple tandem repeats that are present at millions of loci in the human genome. Microsatellite instability (MSI) refers to DNA slippage events on microsatellites that occur frequently in cancer genomes when there is a defect in the DNA-mismatch repair system. These somatic mutations can result in inactivation of tumor-suppressor genes or disrupt other noncoding regulatory se...
متن کاملMSIseq: Software for Assessing Microsatellite Instability from Catalogs of Somatic Mutations
Microsatellite instability (MSI) is a form of hypermutation that occurs in some tumors due to defects in cellular DNA mismatch repair. MSI is characterized by frequent somatic mutations (i.e., cancer-specific mutations) that change the length of simple repeats (e.g., AAAAA…., GATAGATAGATA...). Clinical MSI tests evaluate the lengths of a handful of simple repeat sites, while next-generation seq...
متن کاملI-37: Genome Instability and DNA Damage in Male Somatic and Germ Cells Expressed as Chromosomal Microdeletion and Aneuploidy Is A Major Cause of Male Infertility
Background: Sperm chromatin insufficiencies leading to low sperm count and quality, infertility and transmission of chromosomal microdeletion and aneuploidies to next generations can be due to exposure to environmental pollutions, chemicals and natural or manmade ionizing radiation. In this project which has continued for more than 10 years and is unique in many technical aspects in Iran and in...
متن کاملMismatch repair deficiency endows tumors with a unique mutation signature and sensitivity to DNA double-strand breaks
DNA replication errors that persist as mismatch mutations make up the molecular fingerprint of mismatch repair (MMR)-deficient tumors and convey them with resistance to standard therapy. Using whole-genome and whole-exome sequencing, we here confirm an MMR-deficient mutation signature that is distinct from other tumor genomes, but surprisingly similar to germ-line DNA, indicating that a substan...
متن کاملDNA repair genes are selectively mutated in diffuse large B cell lymphomas
DNA repair mechanisms are fundamental for B cell development, which relies on the somatic diversification of the immunoglobulin genes by V(D)J recombination, somatic hypermutation, and class switch recombination. Their failure is postulated to promote genomic instability and malignant transformation in B cells. By performing targeted sequencing of 73 key DNA repair genes in 29 B cell lymphoma s...
متن کامل